Dimethyloxalylglycine Promotes Bone Marrow Mesenchymal Stem Cell Osteogenesis via Rho/ROCK Signaling.

نویسندگان

  • Lei Zhang
  • Guoliang Jiang
  • Xueling Zhao
  • Yuekun Gong
چکیده

BACKGROUND/AIMS We investigated the role of dimethyloxalylglycine (DMOG) in bone marrow mesenchymal stem cell (BMSC) osteogenesis mediated by RhoA/ROCK. METHODS BMSCs were cultured with and without DMOG and/or Y-27632 (ROCK1 inhibitor). Cell proliferation, alkaline phosphatase (ALP) levels, and calcium deposits were determined. The expression of Runx2, OSX, p-cofilin, RhoA, and GTP-bound RhoA was determined by real-time RT-PCR and Western blot. Rho-associated coiled-coil-containing protein kinase (ROCK) activity was determined by measuring the phosphorylation of myosin-binding subunit of myosin phosphatase using an ELISA kit. Actin morphology was observed by immunofluorescence. RESULTS After 24 h, DMOG (0.5 mM) increased the expression of GTP-bound RhoA (+141%, P < 0.001) and enhanced ROCK activity (315%, P < 0.001). DMOG (0.5 mM) enhanced ALP levels after 3, 7, and 21 days of osteogenic induction (all P < 0.001) and strengthened calcium deposition (P < 0.001). In addition, compared with controls, DMOG (0.5 mM) increased the mRNA levels of osteogenesis genes RUNX2 and OSX (all P < 0.001). Furthermore, compared with controls, DMOG increased the expression of p-cofilin (+57%, P < 0.001), which resulted in rearrangement of actin filaments. All these effects were abolished, at least in part, by Y-27632. CONCLUSION DMOG promotes BMSC osteogenic differentiation via activation of RhoA/ROCK, suggesting clues for future therapies using BMSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Equine Bone Marrow Derived Mesenchymal Stem Cells: Isolation and Multilineage Differentiation

Objective- To evaluate growth characteristics and differentiation capacity of equine mesenchymal stem cell (eMSCs) derived from bone marrow (BM). Study design- In vitro experimental study. Animals- Four young adult horses (2-5 years old) Procedure- Cell morphology and growth characteristics of eMSCs harvested from BM were evaluated in standard culture conditions. eMSCs in passage 3 were subj...

متن کامل

Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension.

Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 39 4  شماره 

صفحات  -

تاریخ انتشار 2016